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ABSTRACT sible range is all motions achievable by a given mechanism.

In this paper we develop a complete classification scheme  Classification schemes for planar four-bar mechanisms can
for planar, spherical and spatial four-bar linkages. The goal of pe found in almost any text on the subject of machine theory.
this classification is to note all of the subtleties of motion that Eqr example, see Erdman and Sandor (1997) or Norton (1992).
an arbitrary set of four link lengths can define. A classification The gross classification of a mechanism is Grashof (having a
should exist only between the mechanisms that exhibit similar fully rotatable link) or non-Grashof and then it is further cate-
ranges of motion at both the input and output. In the planar case, gorized with the familiar titles of crank-rocker, Grashof double-
three parameters being identified as either positive, negative, or rocker, drag link and the likes. Proofs of the Grashof criterion
zero are necessary to completely characterize all possible rangesan be found in Williams and Reinholtz (1986), Paul (1979),
of motion. In the spherical and spatial cases, four parameters be-and the extension to spatiRSSRour-bar linkages in Kazer-
ing identified as positive, negative or zero are needed. The resultgunian and Solecki (1993). For most planar mechanism anal-
is 27 classifications of planar mechanisms and 81 for spherical ysjs, these standard classification methods are ideal. Although
and spatiaRCCCmechanisms. a mechanism’s classification is not always necessary for its an-
imation over some range of motion, the classification helps to
expedite the determination of the range and, occasionally, can be
'NTRODUCTlON . _ necessary. The necessity for a thorough classification scheme

) The synthg§|s_ an_d anaIy_S|s of pla_nar_four-bar mechamsms for mechanisms arises when the mechanism is classified as a
via software utilizing interactive graphics is a practice that has “change-point mechanism”, or lying in the region that separates

now gxisted for t_hirty years. A few of the programs developed Grashof mechanisms from those that are non-Grashof. There ex-
for this purpose include KINSYN (Kaufman, 1978), RECSYN ists a diverse array of these change-point mechanisms to be dif-

(Chuang et al., 1981) and LINCAGES (Erdman and Gustafson, grentiated amongst. In addition, mechanisms of this type are
1977). For the synthesis and analysis of spherical four-bar mech- . mon1y encountered when performing solution rectification
anisms, Larochelle et al. (1993) have develofesk. Of partic- on large sets of candidate mechanisms. For exar8ple,gener-

ular use_in the analysis of a mechgnism is the animation of that jas 3 discrete representation oféfespherical four-bar mecha-
mechanism through some appropriate range of motion. One pos-pismg which will guide a moving body through four orientations
in space. This discretized solution space is presented to the user
as dinkage type mapRuth and McCarthy, 1997 and Murray and

*Address all correspondence to this author.
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McCarthy, 1995). The linkage type map color codes each solu-
tion according to its mechanism type and at the boundaries of the
familiar mechanism types these change-point mechanisms must
occur.

Spherical mechanisms admit a classification scheme simi-
lar to that of planar mechanisms (see Duffy, 1980 and Chiang,
1988). In addition, Grashof’s law holds in a modified form for
the spherical case. The primary utility of these schemes for the
spherical case is to draw a comparison with their planar counter-
parts to allow the use of intuition developed about planar four-
bars.

The scheme developed here, at least for the planar case,
defines parameters similar to those determined by Bottema and
Roth (1979) for classification of the image curves of planar four-
bar motion. Two works of note that seek more complete identi-
fications of the sets of all four-bars are Barker’s (1985) compre-
hensive classification of planar four-bar mechanisms and Savage
and Hall’'s (1970) similar treatment of spherical four-bars (in-
cluding a discussion by Soni).

Figure 1. A PLANAR FOUR-BAR MECHANISM

These equations are the familiar cosine laws defining the &gle
at the limits to the mechanism’s range of motion. These limiting

PLANAR MECHANISM ANALYSIS angles exist if-1 < C,C, < 1. There are three cases:

Consider the planar mechanism shown in Fig. 1 The rela-
tionship between the input angiof the driving link to the out- 1. Neither of the limiting angles©;,i = 1,2 exists, which
put angleW of the output link is means the input link fully rotates;

2. Only one of the two angles exists: a) if it@g then the input
link rocks through the angl® = rtbetweent@;, and, b) if

B C
Y(o) = arctan(—) + arcco<7> (1) ©; exists then the input link rocks through the an@le- 0
VA2 + B2
A A°+B betweent0y;
3. Both angles exist, which means the input link rocks between
where ©; and©; and between-0; and -0, and does not pass

through either 0 ort.
A(©) = 2abcos® — 2gb,
B(©) = 2absin®, and (2 The Input Link
C(©) = g?+b?+a? —h? — 2agcoso. The rootC; determines the smallest positive angle the driv-
ing link can reach. The link can reaéh= 0 if

Note that the arctan() function in Eg. 1 must identify angles on __— )

all four quadrants to be accurate. @ +a)-(h-b*_ )
The argument of the arccosine term in Eg. 1 must be in the 2ag -7

range -1 to +1 for a solution to exist. Therefoké®)?+B(©)? —

C(©)? > 0, and this relation defines the range of the angular O

movement of the input link. Expanding the inequality yields a

guadratic equation in c@that has two roots. (g— a)2 > (h— b)2. (6)
Ci— (0 + @) — (h—Db)? (3) Introduce the parameters
1= 2ag )
Ti=g—a+h—-bandT,=g—a—h+h. (7
(P +a?) — (h+Db)? Noting thatT; T, = (g — a)® — (h — b)?, the driving link passes
Co= 2ag . 4) through the angl® = 0 if the producfl; T, > 0.
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The rootC; determines the largest positive angle reachable
by the driving link. The range of movement of the driving link
includes® = rif

(@+2) — (h+b)° _

2ag -1

(8)
which simplifies to

(9+a)? < (h+b)% 9)
Since all of the link lengths are positive we need only consider
the parameter
T3=h+b-g-a (10)

The conditionT; > 0 identifies that the input link passes through
O=T10

The three parameters;,i = 1,2, 3, characterize the move-
ment of the driving link:

1. The driving link fully rotatesT; T, > 0, andTs > O;

2. The driving link rocks throug® = 0: T1T> > 0 andT3 < 0;

3. The driving link rocks througl® = 1t T; T, < 0 andTz > 0;
and

4. The driving link rocks over two ranges neither of which in-
cludes O ont T T, < 0 andTz < O.

The Output Link
The limiting values of co¥ associated with the output link
of a planar mechanism are given by:

(h+a7— (@ +?)

C3 = 2bg )

(11)

(h—2)?— (g®+1?)
2bg

Cs= . (12)

The condition that the output link pass throudk= 0 is obtained
fromCs as

2_ (2 2
(h+2?—(@+17) )

2bg - (13)

or,

(h+a)2 > (g+b)2

v

(14)

Identify the parameters
h+a—g—b=-T,, (15)

which leads to the result that i < 0 the link passes through
zero, and ifT, > 0 it does not.
The output link passes through= Tif

(h—a7— @+

g < -1, (16)
or,
(h—a)® < (g—b)*. (17)
Using the parameters
g—b+h—a=Tiandg—b—h+a=-Ts, (18)

if T T3 < 0 then the link passes throughotherwise it does not.

The result is that the same parametdrg, = 1,2,3 char-
acterize the movement of the output link, and we have the four
cases:

1. The output link fully rotatesT, < 0 andT; T3 < 0;

2. The output link rocks throughf =0: T, <0 T T3 > O;

3. The output link rocks through’ = 1t T, > 0 andT; T3 < O;
and

4. The output link rocks over two rangek: > 0 andT; T3 > 0.

PLANAR MECHANISM CLASSIFICATION

The three parameteTs,i = 1,2, 3 classify the movement of
the driving and output links of aRllinkage into eight basic types.

If a configuration exists such that all four joints of a pla-
nar linkage lie on a line the mechanism is said to “fold.” If
one (or more) of the characteristidsi = 1,2,3 is zero, then
the mechanism is foldable linkage If we consider the parame-
tersTi,i = 1,2,3 can take the valugst,0, —), then there are 27
classifications of planallinkages, 19 of which fold. The num-
ber of parameters; that are zero equals the number of folding
configurations of the linkage.

Grashof’s Condition

Grashof’s condition states that one of the links in a mech-
anism can fully rotate if the sum of the lengths of the longest
and shortest links is less than (or equal to) the sum of the
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Table 1. BASIC PLANAR 4R LINKAGE TYPES

Linkage type T | | Ts
1. | Crank-rocker + |+ |+
2. | Rocker-crank + | - | -
3. | Double-crank - -+
4. | Grashof double-rocker - | + | -
5. | 00 double-rocker - -] -
6. | Ortdouble-rocker + |+ | -
7. | TO double-rocker + | - |+
8. | Timdouble-rocker -+ |+

Figure 2. A SPHERICAL FOUR-BAR MECHANISM

lengths of the two intermediate links. The classification pre-
sented here leads to an alternate expression for Grashof’s condi-
tion. Note from Table 1 that the mechanism contains a fully ro-
tatable link(and is not a change-point mechanisr) T3 > 0.

This quantity is a function of the link lengtfagh, g andh where

B(®) = sinasinfsin®©, and (20)
C(®) = cosn — cosu cosp cosy

the identification of the longest and shortest links is unnecessary —sina cos sinycosO

to determine whether or not the mechanism contains a fully ro-

tatable link. and 0< a,B,n,y < Tt

w ) o The argument of the arccosine term in Eq. 19 must be in
Consider a mechanisrA with link lengths {a,b,g,h} = the range -1 to +1 for a solution to exist. Therefohé®)? +

{1,3,5,3} and a mechanisrB with {a,b,g,h} = {3,4,3,2}. B(©)2 —C(®)? > 0, and this relation defines the range of the

The associated parameters are, for mechaMisii, T2, Ts} = angular movement of the input link. Expanding the inequality

{4,4,0} and, forB, {Ty, T, Ta} = {—2,2,0}. Both mechanisms  yie|ds a quadratic equation in d®shat has two roots
are readily classified as simple folding four-bars. In fact, both

fold (all of the pivots become colinear) at the location where the

input angle® = 1. This is where the similarities end, however, Ci= cosn _,B) — _COSO( cosy, (21)
with the input link on mechanis# being fully rotatable and the sinasiny

input link on B rocking through® = . An extension of Table

1 to include all 27 cases could be used to rapidly identify this,

noting that any{ +,+,0} mechanism has a fully rotatable input cogn + B) — cosa cosy

crank and anyf—, +,0} mechanism’s input link rocks through G = sinasiny . (22)
=TT

These equations are the spherical cosine laws defining the angle
SPHERICAL MECHANISM ANALYSIS © at the limits to its range of motion. These limiting angles exist
Consider the mechanism shown in Fig. 2. The relationship If =1 <C1,C2 < 1. There are three cases:
between the input angfe of the driving link to the output angle 1. Neither of the limiting angles©;,i = 1,2 exists, which
W of the output link is means the input link fully rotates;
2. Only one of the two angles exists: a) if it@g then the input
< C ) (19) link rocks through the angl® = tbetweent®1, and, b) if
VA2 B? O, exists then the input link rocks through the an@le= 0
betweent0y;
where 3. Both angles exist, which means the input link rocks between
©; and®; and between-0; and —©, and does not pass

A(©) = sinasinpcosycosd — cosa sinBsiny, through either O ort

B
Y(O) = arctan(z\> +arcco
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The Input Link
The rootC; determines the smallest positive angle the driv-
ing link can reach. The link can rea@h= 0 if

cogn — B) — cosu cosy 51
sina siny -7

(23)

or,

cogn —B) > cody—a). (24)

The combinations of angular lengths that satisfy this relation are

ly—al>n-B. (25)
Introduce the parameters
Ti=y—oa+n-PBandTa=y—a—n+p. (26)

The driving link passes through the an@e= 0 if the product
T, T, > 0.

The rootC, determines the largest positive angle reachable

by the driving link. The range of movement of the driving link
includes® = Ttif

cogn + ) — cosa cosy <1
sinasiny -

; (27)

which simplifies to

coqn+B) < cogy+a). (28)

Since all of the link lengths are in the range Qtdhis condition
is equivalent to

[m—(N+B)| < = (y+a)|. (29)
Define the parameters
T3=n+B-y—aandTy=2n-n—-pB-y—a. (30)

The conditionTzT4 > O identifies that the input link passes
through® = 1.

The four parameterg;,i = 1,2, 3,4, characterize the move-
ment of the driving link:

=Y

. The driving link fully rotatesT, T, > 0, andT3T4 > O;
2. The driving link rocks throug® = 0: TyT, > 0 andTsTy <
0;
3. The driving link rocks througl® = 1© T1 T, < 0 andTsTy >
0; and
4. The driving link rocks over two ranges neither of which in-
cludes 0 ot Ty T < 0 andTzT4 < O.

The Output Link
The limiting values of co¥ associated with the output link
of a spherical mechanism are given by:

__cosycos —cogn+a)

C ——
3 sinysinf

; (31)

__cosycos —cogn —a)

Ca sinysinf3

(32)

The condition that the output link pass through= 0 is obtained
fromCs as

cosycos3 —cogn +a)

sinysin = (33)
or,
cogn +a) < cogy+p). (34)
This condition can be expressed as
[m—(n+a)| < [ (y+B)l- (35)
Identify the parameters
n+a—-y—PB=-Tand2ti—-n—a—-y— =Ty, (36)

which leads to the result thatTs T4 < 0 the link passes through
zero, and ifT, T4 > 0 it does not.
The output link passes through= ttif

cosycosp3 — cogn —a)
sinysinf

or,

cogn —a) > cogy—P). (38)
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The link lengths that satisfy this condition are either Table 2. BASIC SPHERICAL 4R LINKAGE TYPES

Linkage type T || T3 |Ta
y=PlI=In—al. (39) 1. | Crank-rocker + |+ ]+
Using the parameters 2. | Rocker-crank A I i
3. | Double-crank S N
y=B+n-a=Tandy—p-n+o=-T, (40) 4. | Grashof double-rocker - | + | - | +
if T, Tz < 0 then the link passes throughotherwise it does not. 5. | 00+ double-rocker i e
The result is that the same parametéys,= 1,2,3,4 char- 6. | O+ double-rocker + |+ | - +
acterize the movement of the output link, and we have the four
. 7. | 0+ double-rocker + | - |+ |+
cases:
1. The output link fully rotatesT, T, < 0 andT; T3 < 0; 8. | mut+ double-rocker o I I
2. The output link rocks throughy = 0: T,T; < 0Ty T3 > O; 9. | Crank-rocker S
3. The outputlink rocks throughl =1t T,T4 > 0 andT; T3 < 0;
and 10. | Rocker-crank CE I I S
4. The output link rocks over two rang€egiT4 > 0 andT; Tz > 11. | Double-crank + | + | - -
0.
12. | Grashof double-rocker + | - | + | -
13. | 00— double-rocker + |+ |+ -
SPHERICAL MECHANISM CLASSIFICATION
The four parameter§,i = 1,2, 3,4 classify the movement of 14. | On— double-rocker N I T
the driving and output links of aRllinkage into two sets of eight 15. | T0— double-rocker I
basic types denoted by those with> 0 and those witfT; < 0.
The eight spherical mechanisms with positiuehave the same 16. | ot double-rocker L

properties as the planaRdmechanisms with the same linkage

type. The linkages witfis < O have link lengths that add up to

greater than # andwrap around the sphere. The characteristics

T1, To, andTs for a linkage withTs < O are the negation of these  fully rotates if the sum of the lengths of the longest and short-

characteristics for the same type of linkage Wigh> 0. Thus two est links is less than (or equal to) the sum of the lengths of the

spherical linkages, each with the negative set of characteristics of two intermediate links. The classification presented here leads

the other, will have the same overall movement of the input and t0 an alternate expression for this condition. Note from Table 2

output links. that a spherical mechanism contains a fully rotatable link(and is
If a configuration exists such that all four joints of a spheri- Nnota change-point mechanismyifTTsTs > 0. This quantity is

cal linkage lie on a plane the mechanism is said to “fold.” If one @ function of the link lengths, 3,y andn where the identifica-

(or more) of the characteristid,i = 1,2,3,4 is zero, then the tion of the longest and shortest links is unnecessary to determine

mechanism is #oldable linkage If we consider the parameters whether or not the mechanism contains a fully rotatable link.

Ti,i = 1,2,3,4 can take the valuest,0,—), then there are 81

classifications of sphericalRllinkages, 65 of which fold. The

number of parametef® that are zero equals the number of fold-  gpaT|AL MECHANISM ANALYSIS

ing configurations of the linkage- Consider the spatiaRCCC mechanism shown in Fig. 3

where the rotation of the revolute joint is considered the input to

Grashof’s Condition this linkage. Associated with eaB#CCCmechanism is a spher-

For any given set of four link lengths defining a spherical ical image. The spherical image is a spherical four-bar mech-
mechanism, changing any two of the link lengths to their sup- anism with link lengths equal to the angular twist of the links
plements defines a mechanism capable of the same motion. Toof the RCCCmechanism, see Duffy (1980). Hence, by having
apply Grashof’s condition to spherical four-bar mechanisms, this previously developed a classification for sphericallthkages
rule must be applied to the link lengths to determine the set with we can now classify spatial linkages. We classify sp&i@aCC
the shortest total length. Grashof’s condition can now be ex- mechanisms according to the linkage type of their corresponding
tended to the sphere: one of the links in a spherical mechanismspherical image.
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Figure 3. A SPATIAL RCCCFOUR-BAR MECHANISM

CONCLUSIONS

In this paper we have developed a complete classification
scheme for planar and spheric& inkages. Moreover, we clas-
sify spatial RCCClinkages according to their associated spher-
ical image. The goal of this classification is to note all of the
subtleties of motion that an arbitrary set of four link lengths can
define. The result is 27 unique classifications of planar mecha-
nisms and 81 for spherical and spatial mechanisms.
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